Categories
Engineering Manufacturing

Yasuhide Yokoi and Final Aim Inc’s Autonomous Delivery Robot

Yasuhide “Yasu” Yokoi is the cofounder of design and technology firm Final Aim Inc., which works with laboratories, startups, and multinational companies to transform ideas into tangible solutions. There, he and his team use Ultimaker 3D printers to better enable rapid design iterations during the prototyping phase.

One of the company’s latest projects is the OSTAW Camello, an autonomous package delivery robot.

Revolutionizing Package Delivery

The Camello was designed to address issues in the delivery logistics chain in Singapore, which causes high shipment costs and operational complexities. Due to low loads and long waiting periods in loading and unloading bays, package deliveries are often inefficient – a fact exacerbated by high delivery volumes and tight delivery deadlines.

To tackle this challenge, Final Aim collaborated with a Singaporean robotics start-up OTSAW Digital PTE LTD, with the Camello being the final product.

The Camello is user friendly, featuring an ergonomic cargo space and sleek design – optimal for Singapore’s urban environment. Plans are currently underway for it to be used by various industrial key players, delivery companies, and retailers throughout Singapore, creating an improved ecosystem that provides smooth and efficient delivery to customers, while increasing profit margins for those businesses that use it.

The Birth of the Camello

As with any product, several phases were involved in Camello’s design, with the Ultimaker S3, Ultimaker Cura, and CAD software acting as Yasu’s and Final Aim’s greatest companions throughout the process.

First came the robot’s concept development and evaluation. From the initiation to ideation, he used both hand-drawn design sketches and CAD software.

Image
Industrial designer Yasuhide Yokoi with the Ultimaker S3 and Camello prototypes

Once he developed the idea, Yasu began the process of presenting it to the higher-level management, frontline members, and end-users. This divergent approach allowed Yasu to gain as much feedback as possible, which he could then use to refine, improve, and further flesh out his concept.

Image
Early sketches of design ideas
Image
A CAD design iteration, which can be 3D printed

Next came the prototyping phase. As Yasu now had numerous potential ideas, he needed to rapidly actualize them – often on tight deadlines. Luckily, this was a task that 3D printing was able to easily handle. Compared to other common prototyping methods such as sculpting or carving from Styrofoam, chemical wood, or industrial clay, 3D printing is much more efficient – freeing up time for Yasu to work on other design tasks.

“More than just cost-cutting, 3D printing has added value to my process,” Yasu said.

Image
3D printed iterations of the robot, ready to be tested and compared

Finalizing an Intuitive Design

Yasu was also responsible for ensuring that the Camello’s final design was of excellent quality. As his works often incorporate organically curved surfaces and silhouettes, which are often difficult to implement, he needed to create numerous iterations. 3D printing technology utilizes the contour layers of printouts to analyze the curvature of surfaces – essentially an equivalent to the zebra mapping that CAD software performs.

“The Ultimaker S3’s double extrusion feature has [also] been essential to my everyday design applications,” Yasu said. “Together with Breakaway and PVA material, my printing experience has become exponentially more efficient. I am deeply satisfied with the resulting quality as it leaves behind no support structure remaining.”

Image
Final design iteration prototyped on the Ultimaker S3
Image
Production Camello delivering groceries in Singapore

For the Camello to be a success, its design had to be intuitive and accessible at first glance. The design process, therefore, involved divergent ideation, exploring all possibilities, which were then carefully narrowed in focus. Development speed was also critical for stakeholders’ requests.

3D printing enabled these stakeholders to see and touch a physical product, deepening their understanding of the Camello’s concept and design – and streamlining the decision-making process.

Image

Go To Market Faster

Discover how 3D printing can accelerate your development cycles, with insights including:

  • How to 3D print faster to test more iterations
  • 4 essential applications for designers
  • The ideal design studio setup and workflow
  • And lots more handy tips and tricks!
Categories
3D Printing Engineering Manufacturing

Formlabs Fuse 1 On-Demand Webinar

Fuse 1 Product and Workflow Overview

Bring the industrial power of Selective Laser Sintering (SLS) into your workshop with an affordable, compact system for prototyping and production-ready nylon parts. The Fuse 1 and Fuse Sift deliver high-quality parts at as little as a tenth of the cost when compared to competing systems. In this on-demand webinar, we provide an overview of the Formlabs Fuse 1 system, along with detailing a number of applications. Watch now to learn more about:

  • How the Fuse 1 system provides high productivity and throughput, with minimal downtime
  • How Formlabs developed an approach for SLS 3D printing focused on simplifying powder management and delivering consistent parts
  • Potential applications for medical prosthetic devices and low batch production
  • More…

Fill out the form below to watch the webinar!

Image

The Fuse 1 brings the industrial power of Selective Laser Sintering (SLS) to your benchtop, providing prototyping and production at a tenth of the cost of existing SLS machines.

Image

SmartSlice is a plug-in for Ultimaker Cura that empowers users to perform validation and optimization of print parameters based on end-use requirements.

Image

Get fast, on-demand manufacturing and rapid prototyping. Dynamism’s online 3D printing service is fast, easy, and allows access to multiple printing technologies.

Categories
Healthcare Manufacturing

Optimized Orthopedic Aids Created With SmartSlice for Cura

Validate Service Performance Using Intelligent Software

By integrating SmartSlice for Cura software into their current production process, adViva was able to save print time and materials, while improving the overall strength of their final mold. This unique piece of software uses Finite Element Analysis to validate slicing settings and selected material, while simulating forces that a part will encounter during usage. Download the case study now to learn their process of custom prosthetic generation, which details how they were able to:

  • Increase throughput utilizing existing equipment
  • Save 50 days of print time throughout a year-long cycle
  • Reduce material usage by over 13 kilograms in a year
  • More…
Categories
Engineering

Agri.Builders and BCN3D Employ Ecological Pesticides

Using Cutting Edge Technology to Deploy Green Pesticides

As the greater impact of chemical pesticides is becoming more well known and studied, it has highlighted the importance of finding green alternatives in the agricultural sector. One innovative approach developed by Agri.Builders uses custom 3D printed drone attachments, allowing them to deploy off the shelf drones for transporting and releasing hormonal rings. These pheromones protect their crops without damaging neighboring ecosystems. Download to learn more about this intriguing process, including:

  • How creating custom components can augment off the shelf equipment for special tasks
  • Technology integration in sustainable agricultural practices
  • Developing reliable and consistent production

Categories
Engineering Manufacturing

Machine Design

Custom Machining with Metal Printing

Custom machining methods for prototypes and assemblies can be costly and time-consuming. By utilizing 3D printing to print metal directly, companies have been able to reduce outsourcing costs and tooling backlogs, while opening new possibilities for additional revenue. Review these four use case examples to learn how:

  • Assembly consolidation can can simplify production
  • Additive manufacturing can unlock design elements not possible through other methods
  • Products can be brought to market faster using rapid prototyping
  • More…
Categories
Engineering Manufacturing

Successfully Implementing Additive for Engineering and Manufacturing

14 Manufacturing and Engineering Case Studies

In this collection of case studies, review how companies are currently using Formlabs SLA technology within their workflows. A wide range of applications are covered, including rapid prototyping, production tools, hybrid manufacturing, and end-use parts. Find out how they successfully:

  • Circumvented complex supply chain issues
  • Reduced cost per part by up to 90%
  • Brought prototyping, manufacturing, fixture, and jig production in-house
  • Unlocked mass customization of products
  • And much more…
Categories
Aerospace Engineering

Topological Optimization of Metal Parts

Topological Optimization of Metal Parts

Find out how Solidform, an industry pioneer in the casting prototype business that has manufactured investment and sand castings for the aerospace industry since 1980, was able to reduce an aerospace component’s weight by 65% while maintaining structural integrity. By optimizing this one part, they were able to achieve a fuel cost savings of nearly half a million dollars over the lifetime of an aircraft fleet. In this paper you will learn to:

  • Optimize parts for reduced weight while maintaining strength requirements
  • Implement scalable additive manufacturing to meet changing demands
  • Create castable patterns directly with a 3D printer

Categories
Engineering Manufacturing

Azoth – Transform Physical To Digital Inventory Using Additive Manufacturing

Transform Physical To Digital Inventory Using Additive Manufacturing

Eliminate waste, save time, and reduce the cost of carrying inventory by transforming indirect materials into digital inventory that can be manufactured on demand! In this success story you will:

  • Learn about Azoth’s Take One Make One inventory management system
  • Learn how TOMO can reduce on hand inventory, eliminate stockouts, and allow engineers to iterate designs with no obsolescence
  • Find real world parts with cost and time savings